396 research outputs found

    The relationship between case-control differential gene expression from brain tissue and genetic associations in schizophrenia

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: The data that supports the findings of this study are available in the supplementary material of this article.Large numbers of genetic loci have been identified that are known to contain common risk alleles for schizophrenia, but linking associated alleles to specific risk genes remains challenging. Given that most alleles that influence liability to schizophrenia are thought to do so by altered gene expression, intuitively, case-control differential gene expression studies should highlight genes with a higher probability of being associated with schizophrenia and could help identify the most likely causal genes within associated loci. Here, we test this hypothesis by comparing transcriptome analysis of the dorsolateral prefrontal cortex from 563 schizophrenia cases and 802 controls with genome-wide association study (GWAS) data from the third wave study of the Psychiatric Genomics Consortium. Genes differentially expressed in schizophrenia were not enriched for common allelic association statistics compared with other brain-expressed genes, nor were they enriched for genes within associated loci previously reported to be prioritized by genetic fine-mapping. Genes prioritized by Summary-based Mendelian Randomisation were underexpressed in cases compared to other genes in the same GWAS loci. However, the overall strength and direction of expression change predicted by SMR were not related to that observed in the differential expression data. Overall, this study does not support the hypothesis that genes identified as differentially expressed from RNA sequencing of bulk brain tissue are enriched for those that show evidence for genetic associations. Such data have limited utility for prioritizing genes in currently associated loci in schizophrenia.Medical Research Council (MRC)National Institute of Mental Health (USA

    Association of genetic liability for psychiatric disorders with accelerometer-assessed physical activity in the UK Biobank.

    Get PDF
    Levels of activity are often affected in psychiatric disorders and can be core symptoms of illness. Advances in technology now allow the accurate assessment of activity levels but it remains unclear whether alterations in activity arise from shared risk factors for developing psychiatric disorders, such as genetics, or are better explained as consequences of the disorders and their associated factors. We aimed to examine objectively-measured physical activity in individuals with psychiatric disorders, and assess the role of genetic liability for psychiatric disorders on physical activity. Accelerometer data were available on 95,529 UK Biobank participants, including measures of overall mean activity and minutes per day of moderate activity, walking, sedentary activity, and sleep. Linear regressions measured associations between psychiatric diagnosis and activity levels, and polygenic risk scores (PRS) for psychiatric disorders and activity levels. Genetic correlations were calculated between psychiatric disorders and different types of activity. Having a diagnosis of schizophrenia, bipolar disorder, depression, or autism spectrum disorders (ASD) was associated with reduced overall activity compared to unaffected controls. In individuals without a psychiatric disorder, reduced overall activity levels were associated with PRS for schizophrenia, depression, and ASD. ADHD PRS was associated with increased overall activity. Genetic correlations were consistent with PRS findings. Variation in physical activity is an important feature across psychiatric disorders. Whilst levels of activity are associated with genetic liability to psychiatric disorders to a very limited extent, the substantial differences in activity levels in those with psychiatric disorders most likely arise as a consequences of disorder-related factors

    High loading of polygenic risk for ADHD in children with comorbid aggression

    Get PDF
    Objective: Although attention deficit hyperactivity disorder (ADHD) is highly heritable, genome-wide association studies (GWAS) have not yet identified any common genetic variants that contribute to risk. There is evidence that aggression or conduct disorder in children with ADHD indexes higher genetic loading and clinical severity. The authors examine whether common genetic variants considered en masse as polygenic scores for ADHD are especially enriched in children with comorbid conduct disorder. Method: Polygenic scores derived from an ADHD GWAS meta-analysis were calculated in an independent ADHD sample (452 case subjects, 5,081 comparison subjects). Multivariate logistic regression analyses were employed to compare polygenic scores in the ADHD and comparison groups and test for higher scores in ADHD case subjects with comorbid conduct disorder relative to comparison subjects and relative to those without comorbid conduct disorder. Association with symptom scores was tested using linear regression. Results: Polygenic risk for ADD, derived from the meta-analysis, was higher in the independent ADHD group than in the comparison group. Polygenic score was significantly higher in ADHD case subjects with conduct disorder relative to ADHD case subjects without conduct disorder. ADHD polygenic score showed significant association with comorbid conduct disorder symptoms. This relationship was explained by,the aggression items. Conclusions: Common genetic variation is relevant to ADHD, especially in individuals with comorbid aggression. The findings suggest that the previously published ADHD GWAS meta-analysis contains weak but true associations with common variants, support for which falls below genome-wide significance levels. The findings also highlight the fact that aggression in ADHD indexes genetic as well as clinical severity

    Lack of Support for the Genes by Early Environment Interaction Hypothesis in the Pathogenesis of Schizophrenia

    Get PDF
    Ursini et al reported recently that the liability of schizophrenia explained by a polygenic risk score (PRS) derived from the variants most associated with schizophrenia was increased 5-fold in individuals who experienced complications during pregnancy or birth. Follow-up gene expression analysis showed that the genes mapping to the most associated genetic variants are highly expressed in placental tissues. If confirmed, these findings will have major implications in our understanding of the joint effect of genes and environment in the pathogenesis of schizophrenia. We examined the interplay between PRS and obstetric complications (OCs) in 5 independent samples (effective N = 2110). OCs were assessed with the full or modified Lewis-Murray scale, or with birth weight < 2.5 kg as a proxy. In a large cohort we tested whether the pathways from placenta-relevant variants in the original report were associated with case-control status. Unlike in the original study, we did not find significant effect of PRS on the presence of OCs in cases, nor a substantial difference in the association of PRS with case-control status in samples stratified by the presence of OCs. Furthermore, none of the PRS by OCs interactions were significant, nor were any of the biological pathways, examined in the Swedish cohort. Our study could not support the hypothesis of a mediating effect of placenta biology in the pathway from genes to schizophrenia. Methodology differences, in particular the different scales measuring OCs, as well as power constraints for interaction analyses in both studies, may explain this discrepancy

    ZNF804a Regulates Expression of the Schizophrenia-Associated Genes PRSS16, COMT, PDE4B, and DRD2

    Get PDF
    ZNF804a was identified by a genome-wide association study (GWAS) in which a single nucleotide polymorphism (SNP rs1344706) in ZNF804a reached genome-wide statistical significance for association with a combined diagnosis of schizophrenia (SZ) and bipolar disorder. Although the molecular function of ZNF804a is unknown, the amino acid sequence is predicted to contain a C2H2-type zinc-finger domain and suggests ZNF804a plays a role in DNA binding and transcription. Here, we confirm that ZNF804a directly contributes to transcriptional control by regulating the expression of several SZ associated genes and directly interacts with chromatin proximal to the promoter regions of PRSS16 and COMT, the two genes we find upregulated by ZNF804a. Using immunochemistry we establish that ZNF804a is localized to the nucleus of rat neural progenitor cells in culture and in vivo. We demonstrate that expression of ZNF804a results in a significant increase in transcript levels of PRSS16 and COMT, relative to GFP transfected controls, and a statistically significant decrease in transcript levels of PDE4B and DRD2. Furthermore, we show using chromatin immunoprecipitation assays (ChIP) that both epitope-tagged and endogenous ZNF804a directly interacts with the promoter regions of PRSS16 and COMT, suggesting a direct upregulation of transcription by ZNF804a on the expression of these genes. These results are the first to confirm that ZNF804a regulates transcription levels of four SZ associated genes, and binds to chromatin proximal to promoters of two SZ genes. These results suggest a model where ZNF804a may modulate a transcriptional network of SZ associated genes

    A comparison of four clustering methods for brain expression microarray data

    Get PDF
    Background DNA microarrays, which determine the expression levels of tens of thousands of genes from a sample, are an important research tool. However, the volume of data they produce can be an obstacle to interpretation of the results. Clustering the genes on the basis of similarity of their expression profiles can simplify the data, and potentially provides an important source of biological inference, but these methods have not been tested systematically on datasets from complex human tissues. In this paper, four clustering methods, CRC, k-means, ISA and memISA, are used upon three brain expression datasets. The results are compared on speed, gene coverage and GO enrichment. The effects of combining the clusters produced by each method are also assessed. Results k-means outperforms the other methods, with 100% gene coverage and GO enrichments only slightly exceeded by memISA and ISA. Those two methods produce greater GO enrichments on the datasets used, but at the cost of much lower gene coverage, fewer clusters produced, and speed. The clusters they find are largely different to those produced by k-means. Combining clusters produced by k-means and memISA or ISA leads to increased GO enrichment and number of clusters produced (compared to k-means alone), without negatively impacting gene coverage. memISA can also find potentially disease-related clusters. In two independent dorsolateral prefrontal cortex datasets, it finds three overlapping clusters that are either enriched for genes associated with schizophrenia, genes differentially expressed in schizophrenia, or both. Two of these clusters are enriched for genes of the MAP kinase pathway, suggesting a possible role for this pathway in the aetiology of schizophrenia. Conclusion Considered alone, k-means clustering is the most effective of the four methods on typical microarray brain expression datasets. However, memISA and ISA can add extra high-quality clusters to the set produced by k-means, so combining these three methods is the method of choice
    • …
    corecore